

LA-UR-19-22023

Approved for public release; distribution is unlimited.

Title: V.A.A.R.E.D. Measurements for Air Sampler Filters

Author(s): Moore, Murray E.

Intended for: Conference telephone call with John Stephens and Matthew Barnett (of

Pacific Northwest National Laboratory). March 2019

Issued: 2019-03-07

V.A.A.R.E.D. Measurements for Air Sampler Filters

Murray E. Moore Los Alamos National Laboratory 2019

- 1. Viscous Flow and Pressure
- 2. Alpha FWHM of ²¹⁸Po peak
- 3. Absorption, self (mass loading)
- 4. Radon Progeny Collection (natural aerosol)
- 5. Efficiency (Aerosol Collection)
- 6. Depth (Burial of non-natural aerosol)

What tests need to be performed this year at Los Alamos?

What portions should be delayed in anticipation of a new technical standard?

V.A.A.R.E.D. Measurements for Air Sampler Filters

Murray E. Moore Los Alamos National Laboratory 2019

- 1. Viscous Flow and Pressure
- 5. Efficiency (Aerosol Collection)
- 3. Absorption, self (mass loading)
- 6. Depth (Burial of non-natural aerosol)
- 2. Alpha FWHM of ²¹⁸Po peak
- 4. Radon Progeny Collection (natural aerosol)

1. Viscous Flow and Pressure

Filter face velocity versus pressure drop fitted to a second order polynomial.

Moore et al. 2018. LA-UR-18-30267

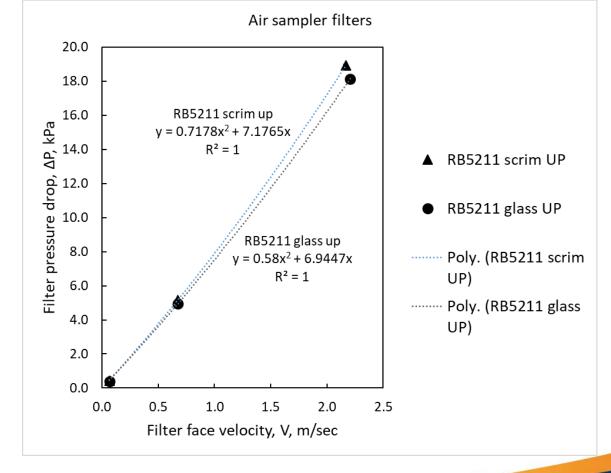


Table 1. Total report data: face velocity (flow rate) versus pressure drop, alpha spectrum resolution and filter collection efficiency at 0.3 μ m particulate diameter.

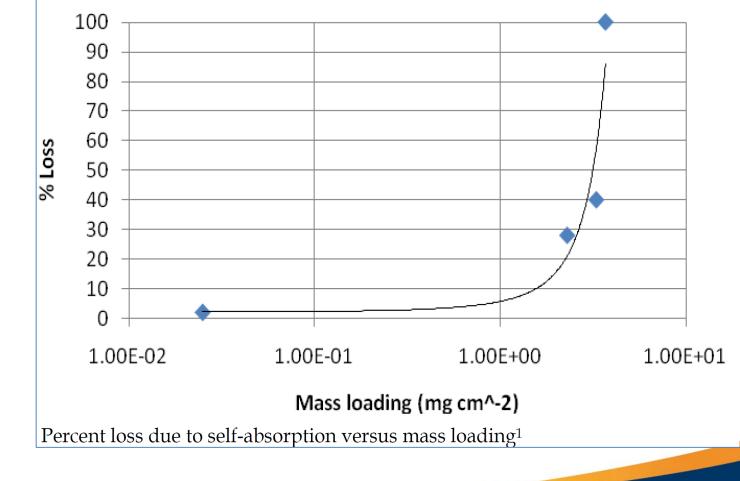
5. Efficiency (aerosol collection)

Moore et al. 2018. LA-UR-18-30267

¥	Filter type	Filter face velocity test condition, m/s	Velocity, m/s	Equivalent flow rate for TA-55 FAS, ACFM	ΔP, inHg	FWHM, keV	Eff @ 0.3 μm (with OPS)
	RB5211 glass fiber up	Efficiency test	0.066	0.22	0.14	n/a	100.0
		Efficiency test	0.674	2.27	1.46	n/a	100.0
8.		Efficiency test	2.205	7.44	5.37	n/a	99.922
,		FWHM in CAM	0.75	2.54	1.64	1200	n/a
	RB5211 scrim side up	Efficiency test vel.	0.066	0.22	0.14	n/a	100.0
		Efficiency test vel.	0.673	2.27	1.52	n/a	99.965
		Efficiency test vel.	2.167	7.31	5.60	n/a	99.973
		FWHM in CAM	0.73	2.44	1.65	2720	n/a

3. Absorption (self) versus mass loading

<u>and</u>


6. Depth of burial

3. Absorption (self) versus mass loading

Barnett JM. 2011. Concepts for environmental radioactive air sampling and monitoring..pdf

6. Depth of burial

Moore McFarland Rodgers 1993 Factors That Affect Alpha Particle Detection In Continuous Air Monitor Applications

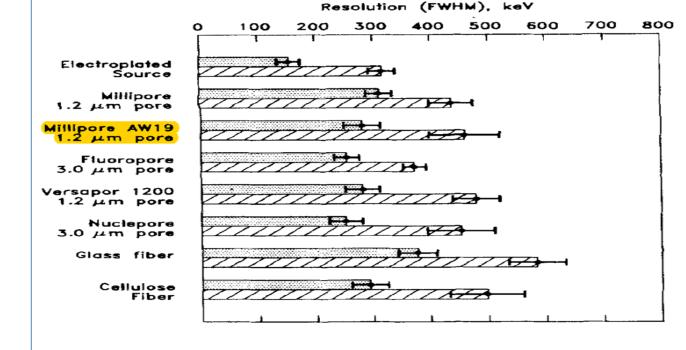


Fig. 2. The resolution (FWHM) of the alpha spectra from 1.0- μ m physical diameter uranium acetate aerosol particles collected by various filter media. Results for an electroplated source (²³⁹Pu) are given for comparison. The layers of deposited aerosol particles are thin (1 μ g cm² filter area). Source-to-detector gap = 5.0 mm. Filter active area = 925 mm². Detector active area = 450 mm².

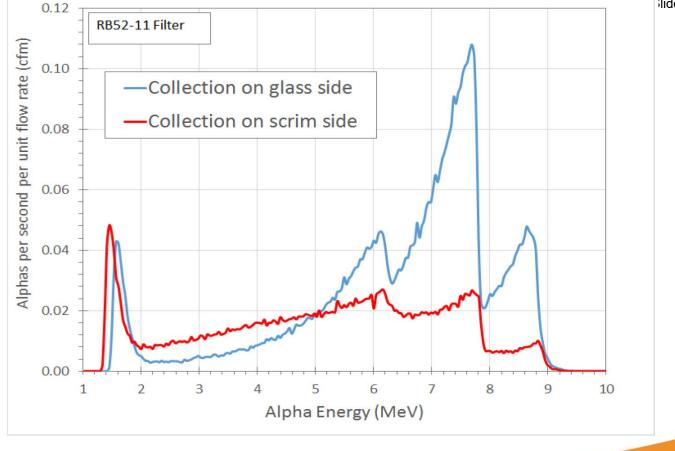
Atmospheric

UNCLASSIFIED

Vacuum

2. Alpha (²¹⁸Po) FWHM

<u>and</u>


4. Radon Progeny Collection

2. Alpha FWHM

Moore et al. 2018. LA-UR-18-30267

4. Radon Progeny Collection

Example: Note the difference between the last two columns.

Hoover and Cash (2018) based on Hoover and Newton (1991)

Filter Type	Filter Composition (and Durability)	Typical Flow Rate (L·min ⁻¹ per cm ² per psi) ^a	FWHM of the Po-218 PEAK (keV) ^b	Relative Radon Progeny Counts in the Pu ROI ^c	Relative Radon Progeny Collection Efficiency ^d	Filter Efficiency Range (%) ^e
Versapor 3000 (3.0 µm pore size) Gelman Sciences, Ann Arbor, MI	acrylic copolymer on a nylon fibre support (rugged; both sides similar)	5.0	590	0.94	0.75 ± 0.02	99.7 to > 99.99

What tests need to be performed this year at Los Alamos?

What portions of this work should be delayed in anticipation of a new technical standard?

yes

no

yes

yes

no

Dependence on aerosol type?

Situation or material dependent

condition? Difficult to do this at

Natural material. This is an

aspect of the

burial depth measurements.

Non-natural material

? A filter property or a filter

LANL. Optical methods?

VAARED measurements

	<u>Acronym</u>	Aerosol type	<u>Aerosol Size</u>	<u>Note</u>	LANL 2018?
\/	Viscous Flow and	NI/A	N1/A		1105
V	<u>Pressure</u>	N/A	N/A		yes
		Radon	Submicron (Hoover et al 1991)		

versus micron (Moore et al

1993)

Micron

Submicron

Submicron and micron

Micron or submicron

UNCLASSIFIED

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Alpha FWHM

Absorption, self

(mass loading)

Radon Progeny

Collection

Efficiency (Aerosol

Collection)

Depth (Burial of

non-natural aerosol)

progeny

Transuranic

material

Radon

progeny

ambient

Transuranic

material

Α

D

Supplemental slides

		per psi) ^a				
Millipore Type SMWP (5.0 µm pore size) Millipore Corp, Bedford, MA	mixed esters of cellulose acetate and cellulose nitrate (fragile; electrostatic; both sides similar)	3.2	670	1	1	98.1 to > 99.99
Millipore Type AW19 (5.0 µm pore size) Millipore Corp	homogeneous, microporous polymers of cellulose esters formed around a cellulose web (rugged; both sides similar)	3.2	470	0.57	0.99 ± 0.01	99.93 to > 99.99
Durapore SVLP (5.0 μm pore size) Millipore Corp	polyvinylidene fluoride (rugged; both sides similar)	2.8	790	1.55	0.67 ± 0.01	-
Fluoropore FSLW (3.0 µm pore size) Millipore Corp	polytetrafluoro-ethylene bonded to polypropylene high-density fibers (rugged; front is membrane; back is fibres; sides barely distinguishable by naked eye)	4.6	350	0.47	1.04 ± 0.02	98.2 to > 99.98
Fluoropore FMLB (5.0 µm pore size) Millipore Corp	Polytetrafluoroethylene bonded to polypropylene high-density fibers (rugged; front is membrane; back is fibers; sides distinguishable by naked eye - high contrast backing)	12	460	0.67	0.96 ± 0.04	
Versapor 3000 (3.0 µm pore size) Gelman Sciences, Ann Arbor, MI	acrylic copolymer on a nylon fibre support (rugged; both sides similar)	5.0	590	0.94	0.75 ± 0.02	99.7 to > 99.99
Gelman Type A/E (-1.0 μm pore size) Pall- Gelman, East Hills, NY	borosilicate glass fibre without binder (breakable during handling; both sides similar)	5.0	≥ 1000	1.31	0.92 ± 0.01	99.6 to > 99.99
Whatman EPM 2000 Whatman LabSales, Hillsboro, OR	borosilicate glass microfiber without binder (breakable during handling; both sides similar)	4.0	≥ 1000	1.48	1.00 ± 0.03	-
Whatman 41 Whatman LabSales	cotton cellulose filter paper (rugged; currently used primarily for liquid filtration; both sides similar)	5.0	≥ 1500	1.65	0.42 ± 0.01	43 to > 99.5
Nuclepore (0.6 µm pore size) VWR Scientific, Pleasanton, CA	polycarbonate membrane (rugged; thin; very electrostatic; currently used primarily for liquid filtration; collection side recommended by manufacturer is the shiny side)	0.8	500	0.89	0.85 ± 0.02	53 to > 99.5
Millipore Type AABP (0.8 μm pore size) Millipore Corp	mixed esters of cellulose (fragile; electrostatic; collection side is darker)	1.4	520	0.91	1.05 ± 0.01	99.999 to > 99.999
Note: Radon Progeny Collection Hoover and Cash (2018) based on Hoover and Newton (1991)						
Managed by Triad National Security LLC for the LLS Department of Energy's NNSA						NATIONAL LABORATORY ————————————————————————————————————

FWHM of

the Po-218

PEAK (keV)b

Relative Radon

Progeny Counts

in the Pu ROI^c

Relative Radon

Progeny

Collection

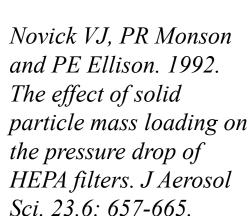
Efficiency^d

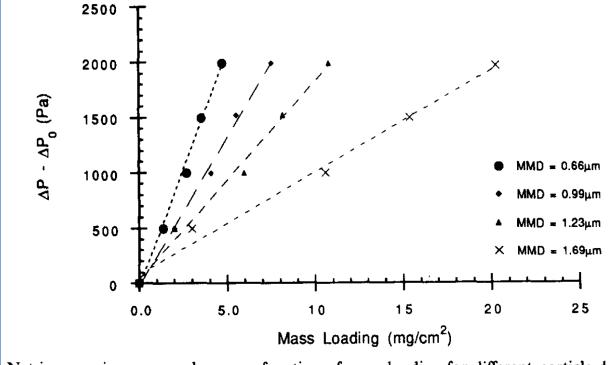
Filter Efficiency

Range (%)e

Typical

Flow Rate


 $(L \cdot min^{-1})$


per cm² per psi)a

Filter Type

Filter Composition

(and Durability)

Net increase in pressure drop as a function of mass loading for different particle distributions of NaCl aerosol.

END

